Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great": great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.For example, if we choose the node
"gr" and swap its two children, it produces a scrambled string "rgeat". rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".Similarly, if we continue to swap the children of nodes
"eat" and "at", it produces a scrambled string "rgtae". rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
思路: 直接递归做超时了,因此改用DP,恩,其实是个很典型的DP题了。
- bool isScramble(string s1, string s2) {
- int n = s1.size();
- if(s2.size() != n) return false;
- if(n == 0) return true;
- bool A[n][n][n+1];
- for(int i = 0; i < n; i++){
- for(int j = 0; j < n; j++){
- A[i][j][1] =(s1[i] == s2[j])? true : false;
- }
- }
- for(int k = 2; k < n+1; k++){
- for(int i = 0; i <= n - k; i++){
- for(int j = 0; j <= n - k; j++){
- A[i][j][k] = false;
- for(int m = 1; m < k; m++){
- if(A[i][j][m] && A[i+m][j+m][k-m]) A[i][j][k] = true;
- if(A[i][j+k-m][m] && A[i+m][j][k-m]) A[i][j][k] = true;
- }
- }
- }
- }
- return A[0][0][n];
- }
暴力解法:
bool isScramble(string s1, string s2) {
if(s1.size() != s2.size()) return false;
if(s1 == s2) return true;
int n = s1.length();
if(n == 0) return true;
if(n == 1) return s1 == s2;
for(int i = 1; i < n; i++){
string s1left = s1.substr(0,i), s1right = s1.substr(i, n-i);
string s2left = s2.substr(0, i), s2right = s2.substr(i, n-i);
string s2left2 = s2.substr(0, n-i), s2right2 = s2.substr(n-i, i);
if(isScramble(s1left, s2left) && isScramble(s1right, s2right)) return true;
if(isScramble(s1left, s2right) && isScramble(s1right, s2left)) return true;
if(isScramble(s1left, s2left2) && isScramble(s1right, s2right2)) return true;
if(isScramble(s1left, s2right2) && isScramble(s1right, s2left2)) return true;
}
return false;
}
No comments:
Post a Comment