Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
好久没写code了,先练个暴力的:
void helper(vector<vector<int> > &triangle, int &res, int sum, int level, int pos){
if(level == triangle.size()) {
if(sum < res) res = sum;
return;
}
helper(triangle, res, sum + triangle[level][pos], level + 1, pos);
helper(triangle, res, sum + triangle[level][pos+1], level + 1, pos + 1);
}
int minimumTotal(vector<vector<int> > &triangle) {
int n = triangle.size();
if(n == 0) return 0;
int sum = triangle[0][0], res = INT_MAX;
helper(triangle,res, sum, 1,0);
return res;
}
果然大集合没过,想了下,如果记录到达每个node的最短距离,可以省去很多重复计算,于是写了下面这个:
int minimumTotal(vector<vector<int> > &triangle) {
int n = triangle.size();
map<pair<int,int>, int> record;
int res = INT_MAX;
record[make_pair(0,0)] = triangle[0][0];
for(int i = 1; i < n; i ++){
record[make_pair(i,0)] = record[make_pair(i-1,0)] + triangle[i][0];
record[make_pair(i,i)] = record[make_pair(i-1,i-1)] + triangle[i][i];
for(int j = 1; j < i; j++){
record[make_pair(i,j)] = min(record[make_pair(i-1,j)], record[make_pair(i-1, j-1)]) +
triangle[i][j];
}
}
for(int i = 0; i < n; i++){
if(record[make_pair(n-1,i)] < res) res = record[make_pair(n-1,i)];
}
return res;
}
然后又follow了一下题目的hint, 只用一个长度为n的array来记录结果。注意每次新的一行更新要倒着来。
int minimumTotal(vector<vector<int> > &triangle) {
int n = triangle.size();
vector<int> record(n, INT_MIN);
int res = INT_MAX;
record[0] = triangle[0][0];
for(int i = 1; i < n; i ++){
record[i] = record[i-1] + triangle[i][i];
for(int j = i-1; j > 0; j--){
record[j] = min(record[j], record[j-1]) + triangle[i][j];
}
record[0] += triangle[i][0];
}
for(int i = 0; i < n; i++){
if(record[i] < res) res = record[i];
}
return res;
}